summaryrefslogtreecommitdiff
path: root/cleanbench.c
blob: 0b97ad0ac385cd8e8d548f6e5e1695d4e5067c7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include <time.h>

#include "cleanbench.h"
#include "randnum.h"

static bool bench_with_confidence(int benchmark, double* average, double* std_dev, int* runs);
static bool calc_confidence(double scores[], int runs, double* c_half_interval, double* average, double* std_dev);

#define NUM_TESTS 10

enum {
	NUMSORT,
	FPEMULATION,
	IDEA,
	HUFFMAN,
	STRINGSORT,
	BITFIELD,
	ASSIGNMENT,
	FOURIER,
	NEURAL,
	LINEAR
} tests_t;

int
main()
{
        const char* benchmark_name[] = {
                "NUMERIC SORT    ",
                "FP EMULATION    ",
                "IDEA            ",
                "HUFFMAN         ",
                "STRING SORT     ",
                "BITFIELD        ",
                "ASSIGNMENT      ",
                "FOURIER         ",
                "NEURAL NET      ",
                "LU DECOMPOSITION"
        };

        /*
        ** Indexes -- Baseline is DELL Pentium XP90
        ** 11/28/94
        */
        const double old_index[] = {
              38.993,   /* Numeric sort */
               2.084,   /* FP Emulation */
              65.382,   /* IDEA */
              36.062,   /* Huffman */
               2.238,   /* String sort */
             5829704,   /* Bitfield */
              0.2628,   /* Assignment */
             879.278,   /* Fourier */
              0.6225,   /* Neural Net */
             19.3031    /* LU Decomposition */
        };

        /*
        ** Indices -- Baseline is a AMD K6-233, 32MB RAM (60ns SDRAM),512k L2 cache,
        ** Linux kernel 2.0.32, libc-5.4.38, gcc-2.7.2.3)
        ** Nov/30/97
        */
        const double linux_index[] = {
              118.73, 	/* Numeric sort */
              9.0314,	/* FP Emulation */
              220.21,	/* IDEA */
              112.93,	/* Huffman */
              14.459,	/* String sort */
            27910000,	/* Bitfield */
              1.0132,	/* Assignment */
              1565.5,	/* Fourier */
              1.4799,   /* Neural Net */
              26.732    /* LU Decomposition */
        };

        double          linux_memindex = 1.0;   /* Linux memory index */
        double          linux_intindex = 1.0;   /* Linux integer index */
        double          linux_fpindex = 1.0;    /* Linux floating-point index */
        double          intindex = 1.0;         /* Old Integer index */
        double          fpindex = 1.0;          /* Old Floating-point index */
        double          average;                /* Average of benchmark results */
        double          std_dev;                /* Standard deviation of benchmark results */
        int             runs;                   /* # of runs */
        int             benchmark = FOURIER;

        puts(   "TEST                : Iterations/sec.  : Old Index   : New Index\n"
                "                    :                  : Pentium 90  : AMD K6/233\n"
                "--------------------:------------------:-------------:------------");

        for (; benchmark < NUM_TESTS; benchmark++) {
                printf("%s    :", benchmark_name[benchmark]);

                if (!bench_with_confidence(benchmark, &average, &std_dev, &runs)) {
                        printf( "\n** WARNING: The current benchmark result is NOT 95 %% statistically certain.\n"
                                "** WARNING: The variation among the individual results is too large.\n"
                                "                    :");
                }
                printf(" %15.5g  :  %9.2f  :  %9.2f\n", average, average / old_index[benchmark], average / linux_index[benchmark]);

		if (benchmark >= FOURIER) {
                        fpindex *= average /old_index[benchmark];
                        linux_fpindex *= average / linux_index[benchmark];
		} else {
                        intindex *= average / old_index[benchmark];
                        if (benchmark <= HUFFMAN) {
                                linux_intindex *= average / linux_index[benchmark];
                        } else {
                                linux_memindex *= average / linux_index[benchmark];
                        }
		}
        }
        printf( "==========================ORIGINAL BYTEMARK RESULTS==========================\n"
                "INTEGER INDEX       : %.3f\n"
                "FLOATING-POINT INDEX: %.3f\n"
                "Baseline (MSDOS)    : Pentium 90, 256 KB L2-cache, Watcom compiler 10.0\n"
                "===========================LINUX BENCHMARK RESULTS===========================\n",
                pow(intindex, .142857), pow(fpindex, .33333));
	hardware();
#include "sysinfo.c"
        printf( "MEMORY INDEX        : %.3f\n"
                "INTEGER INDEX       : %.3f\n"
                "FLOATING-POINT INDEX: %.3f\n"
                "Baseline (Linux)    : AMD K6/233, 512 KB L2-cache, gcc 2.7.2.3, libc-5.4.38\n",
                pow(linux_memindex, .3333333333), pow(linux_intindex, .25), pow(linux_fpindex, .3333333333));
        return 0;
}

/**************************
** bench_with_confidence **
***************************
** Given a benchmark, this routine repeatedly calls that benchmark,
** seeking to collect and replace scores to get 5 that meet the
** confidence criteria.
**
** The above is mathematically questionable, as the statistical theory
** depends on independent observations, and if we exchange data points
** depending on what we already have then this certainly violates
** independence of the observations. Hence I changed this so that at
** most 30 observations are done, but none are deleted as we go
** along. We simply do more runs and hope to get a big enough sample
** size so that things stabilize. Uwe F. Mayer
**
** Return true; false on failure.  Returns average
** and standard deviation through argument list if successful.
*/
static bool
bench_with_confidence(int benchmark, double* average, double* std_dev, int* runs)
{
        double (*Do[])(void) = {
                DoNumSort,
                DoEmFloat,
                DoIDEA,
                DoHuffman,
                DoStringSort,
                DoBitops,
                DoAssign,
                DoFourier,
                DoNNET,
                DoLU
        };

        double score[30];            /* Need at least 5 scores, use at most 30 */
        double c_half_interval;         /* Confidence half interval */
        int i;                          /* Index */

        /*
        ** Get first 5 scores.  Then begin confidence testing.
        */
        for (i = 0; i < 5; i++) {
                score[i] = (*Do[benchmark])();
        }
        *runs = 5;            /* Show 5 attempts */

        /*
        ** The system allows a maximum of 30 tries before it gives
        ** up.  Since we've done 5 already, we'll allow 25 more.
        */

        /*
        ** Enter loop to test for confidence criteria.
        */
        while(1) {
                /* Calculate confidence. Should always return true */
                if (!calc_confidence(score, *runs, &c_half_interval, average, std_dev)) {
                        return false;
                }

                /*
                ** Is the length of the half interval 5% or less of average?
                ** If so, we can go home.  Otherwise, we have to continue.
                */
                if (c_half_interval / (*average) <= 0.05) {
                        break;
                }

                if (*runs == 30) {
                        return false;
                }

                score[*runs] = (*Do[benchmark])();
                *runs += 1;
        }

        return true;
}

 /********************
** calc_confidence **
*********************
** Given a set of scores, calculate the confidence
** half-interval.  We'll also return the sample average
** and sample standard deviation.
** NOTE: This routines presumes a confidence of 95% and
** a confidence coefficient of .95
** returns false if there is an error, otherwise true
*/
static bool calc_confidence(double scores[], int runs, double* c_half_interval, double* average, double* std_dev)
{
        /* Here is a list of the student-t distribution up to 29 degrees of
        ** freedom. The value at 0 is bogus, as there is no value for zero
        ** degrees of freedom. */
        const double t_distribution[30] = {
                0.0,12.706, 4.303, 3.182, 2.776,
              2.571, 2.447, 2.365, 2.306, 2.262,
              2.228, 2.201, 2.179, 2.160, 2.145,
              2.131, 2.120, 2.110, 2.101, 2.093,
              2.086, 2.080, 2.074, 2.069, 2.064,
              2.060, 2.056, 2.052, 2.048, 2.045
        };

        int i;

        if ((runs<2) || (runs>30)) {
                fputs("Internal error: calc_confidence called with an illegal number of scores", stderr);
                return false;
        }

        /* First, calculate average.*/
        *average = 0.0;
        for (i = 0; i < runs; i++) {
                *average += scores[i];
        }
        *average /=  (double)runs;

        /* Get standard deviation */
        *std_dev = 0.0;
        for (i = 0; i < runs; i++) {
                *std_dev += (scores[i] - (*average)) * (scores[i] - (*average));
        }
        *std_dev /= (double)(runs - 1);
        *std_dev = sqrt(*std_dev);

        /* Now calculate the length of the confidence half-interval.  For a
        ** confidence level of 95% our confidence coefficient gives us a
        ** multiplying factor of the upper .025 quartile of a t distribution
        ** with runs-1 degrees of freedom, and dividing by sqrt(number of
        ** observations). See any introduction to statistics.
        */
        *c_half_interval = t_distribution[runs - 1] * (*std_dev) / sqrt((double)runs);

        return true;
}