1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include <time.h>
#include "nmglobal.h"
#include "nbench1.h"
/*************************
** ASSIGNMENT ALGORITHM **
*************************/
/*
** DEFINES
*/
#define ASSIGNROWS 101L
#define ASSIGNCOLS 101L
/*
** TYPEDEFS
*/
typedef struct {
union {
long *p;
long (*ap)[ASSIGNROWS][ASSIGNCOLS];
} ptrs;
} longptr;
/*
** PROTOTYPES
*/
static clock_t DoAssignIteration(long *arraybase,
unsigned long numarrays);
static void LoadAssignArrayWithRand(long *arraybase,
unsigned long numarrays);
static void LoadAssign(long arraybase[][ASSIGNCOLS]);
static void CopyToAssign(long arrayfrom[][ASSIGNCOLS],
long arrayto[][ASSIGNCOLS]);
static void Assignment(long arraybase[][ASSIGNCOLS]);
static void calc_minimum_costs(long tableau[][ASSIGNCOLS]);
static int first_assignments(long tableau[][ASSIGNCOLS],
short assignedtableau[][ASSIGNCOLS]);
static void second_assignments(long tableau[][ASSIGNCOLS],
short assignedtableau[][ASSIGNCOLS]);
/*************
** DoAssign **
**************
** Perform an assignment algorithm.
** The algorithm was adapted from the step by step guide found
** in "Quantitative Decision Making for Business" (Gordon,
** Pressman, and Cohn; Prentice-Hall)
**
**
** NOTES:
** 1. Even though the algorithm distinguishes between
** ASSIGNROWS and ASSIGNCOLS, as though the two might
** be different, it does presume a square matrix.
** I.E., ASSIGNROWS and ASSIGNCOLS must be the same.
** This makes for some algorithmically-correct but
** probably non-optimal constructs.
**
*/
void
DoAssign(void)
{
const char* context = "CPU:Assignment";
AssignStruct* locassignstruct = &global_assignstruct; /* Local structure ptr */
long* arraybase = NULL;
unsigned long total_time = 0;
int iterations = 0;
/*
** See if we need to do self adjustment code.
*/
if (locassignstruct->adjust == FALSE) {
locassignstruct->adjust = TRUE;
/*
** Self-adjustment code. The system begins by working on 1
** array. If it does that in no time, then two arrays
** are built. This process continues until
** enough arrays are built to handle the tolerance.
*/
locassignstruct->numarrays = 1;
while (1) {
arraybase = realloc(arraybase, sizeof(long) * ASSIGNROWS * ASSIGNCOLS * locassignstruct->numarrays);
if (!arraybase) {
fprintf(stderr, "Error in %s, could not allocate memory. Exitting...\n", context);
exit(1);
}
/*
** Do an iteration of the assignment alg. If the
** elapsed time is less than or equal to the permitted
** minimum, then allocate for more arrays and
** try again.
*/
if (DoAssignIteration(arraybase, locassignstruct->numarrays) > global_min_ticks) {
break;
}
++locassignstruct->numarrays;
}
} else {
arraybase = malloc(sizeof(long) * ASSIGNROWS * ASSIGNCOLS * locassignstruct->numarrays);
if (!arraybase) {
fprintf(stderr, "Error in %s, could not allocate memory. Exitting...\n", context);
exit(1);
}
}
do {
total_time += DoAssignIteration(arraybase, locassignstruct->numarrays);
++iterations;
} while (total_time < locassignstruct->request_secs * CLOCKS_PER_SEC);
free(arraybase);
locassignstruct->iterspersec = (double)(iterations * CLOCKS_PER_SEC *locassignstruct->numarrays) / (double)total_time;
}
/**********************
** DoAssignIteration **
***********************
** This routine executes one iteration of the assignment test.
** It returns the number of ticks elapsed in the iteration.
*/
static clock_t
DoAssignIteration(long *arraybase, unsigned long numarrays)
{
clock_t start, stop;
longptr abase;
unsigned long i;
abase.ptrs.p=arraybase;
LoadAssignArrayWithRand(arraybase,numarrays);
start = clock();
for (i = 0; i < numarrays; i++) {
/* abase.ptrs.p+=i*ASSIGNROWS*ASSIGNCOLS; */
/* Fixed by Eike Dierks */
Assignment(*abase.ptrs.ap);
abase.ptrs.p += ASSIGNROWS * ASSIGNCOLS;
}
stop = clock();
return stop - start;
}
/****************************
** LoadAssignArrayWithRand **
*****************************
** Load the assignment arrays with random numbers. All positive.
** These numbers represent costs.
*/
static void LoadAssignArrayWithRand(long *arraybase,
unsigned long numarrays)
{
longptr abase,abase1; /* Local for array pointer */
unsigned long i;
/*
** Set local array pointer
*/
abase.ptrs.p=arraybase;
abase1.ptrs.p=arraybase;
/*
** Set up the first array. Then just copy it into the
** others.
*/
LoadAssign(*(abase.ptrs.ap));
if(numarrays>1)
for(i=1;i<numarrays;i++)
{ /* abase1.ptrs.p+=i*ASSIGNROWS*ASSIGNCOLS; */
/* Fixed by Eike Dierks */
abase1.ptrs.p+=ASSIGNROWS*ASSIGNCOLS;
CopyToAssign(*(abase.ptrs.ap),*(abase1.ptrs.ap));
}
return;
}
/***************
** LoadAssign **
****************
** The array given by arraybase is loaded with positive random
** numbers. Elements in the array are capped at 5,000,000.
*/
static void LoadAssign(long arraybase[][ASSIGNCOLS])
{
unsigned short i,j;
/*
** Reset random number generator so things repeat.
*/
/* randnum(13L); */
randnum(13);
for(i=0;i<ASSIGNROWS;i++)
for(j=0;j<ASSIGNROWS;j++){
/* arraybase[i][j]=abs_randwc(5000000L);*/
arraybase[i][j]=abs_randwc((int32_t)5000000);
}
return;
}
/*****************
** CopyToAssign **
******************
** Copy the contents of one array to another. This is called by
** the routine that builds the initial array, and is used to copy
** the contents of the intial array into all following arrays.
*/
static void CopyToAssign(long arrayfrom[ASSIGNROWS][ASSIGNCOLS],
long arrayto[ASSIGNROWS][ASSIGNCOLS])
{
unsigned short i,j;
for(i=0;i<ASSIGNROWS;i++)
for(j=0;j<ASSIGNCOLS;j++)
arrayto[i][j]=arrayfrom[i][j];
return;
}
/***************
** Assignment **
***************/
static void Assignment(long arraybase[][ASSIGNCOLS])
{
short assignedtableau[ASSIGNROWS][ASSIGNCOLS];
/*
** First, calculate minimum costs
*/
calc_minimum_costs(arraybase);
/*
** Repeat following until the number of rows selected
** equals the number of rows in the tableau.
*/
while(first_assignments(arraybase,assignedtableau)!=ASSIGNROWS)
{ second_assignments(arraybase,assignedtableau);
}
#ifdef DEBUG
{
int i,j;
printf("\nColumn choices for each row\n");
for(i=0;i<ASSIGNROWS;i++)
{
printf("R%03d: ",i);
for(j=0;j<ASSIGNCOLS;j++)
if(assignedtableau[i][j]==1)
printf("%03d ",j);
}
}
#endif
return;
}
/***********************
** calc_minimum_costs **
************************
** Revise the tableau by calculating the minimum costs on a
** row and column basis. These minima are subtracted from
** their rows and columns, creating a new tableau.
*/
static void calc_minimum_costs(long tableau[][ASSIGNCOLS])
{
unsigned short i,j; /* Index variables */
long currentmin; /* Current minimum */
/*
** Determine minimum costs on row basis. This is done by
** subtracting -- on a row-per-row basis -- the minum value
** for that row.
*/
for(i=0;i<ASSIGNROWS;i++)
{
currentmin = LONG_MAX; /* Initialize minimum */
for(j=0;j<ASSIGNCOLS;j++)
if(tableau[i][j]<currentmin)
currentmin=tableau[i][j];
for(j=0;j<ASSIGNCOLS;j++)
tableau[i][j]-=currentmin;
}
/*
** Determine minimum cost on a column basis. This works
** just as above, only now we step through the array
** column-wise
*/
for(j=0;j<ASSIGNCOLS;j++)
{
currentmin = LONG_MAX; /* Initialize minimum */
for(i=0;i<ASSIGNROWS;i++)
if(tableau[i][j]<currentmin)
currentmin=tableau[i][j];
/*
** Here, we'll take the trouble to see if the current
** minimum is zero. This is likely worth it, since the
** preceding loop will have created at least one zero in
** each row. We can save ourselves a few iterations.
*/
if(currentmin!=0)
for(i=0;i<ASSIGNROWS;i++)
tableau[i][j]-=currentmin;
}
return;
}
/**********************
** first_assignments **
***********************
** Do first assignments.
** The assignedtableau[] array holds a set of values that
** indicate the assignment of a value, or its elimination.
** The values are:
** 0 = Item is neither assigned nor eliminated.
** 1 = Item is assigned
** 2 = Item is eliminated
** Returns the number of selections made. If this equals
** the number of rows, then an optimum has been determined.
*/
static int first_assignments(long tableau[][ASSIGNCOLS],
short assignedtableau[][ASSIGNCOLS])
{
unsigned short i,j,k; /* Index variables */
unsigned short numassigns; /* # of assignments */
unsigned short totnumassigns; /* Total # of assignments */
unsigned short numzeros; /* # of zeros in row */
int selected=0; /* Flag used to indicate selection */
/*
** Clear the assignedtableau, setting all members to show that
** no one is yet assigned, eliminated, or anything.
*/
for(i=0;i<ASSIGNROWS;i++)
for(j=0;j<ASSIGNCOLS;j++)
assignedtableau[i][j]=0;
totnumassigns=0;
do {
numassigns=0;
/*
** Step through rows. For each one that is not currently
** assigned, see if the row has only one zero in it. If so,
** mark that as an assigned row/col. Eliminate other zeros
** in the same column.
*/
for(i=0;i<ASSIGNROWS;i++)
{ numzeros=0;
for(j=0;j<ASSIGNCOLS;j++)
if(tableau[i][j]==0L)
if(assignedtableau[i][j]==0)
{ numzeros++;
selected=j;
}
if(numzeros==1)
{ numassigns++;
totnumassigns++;
assignedtableau[i][selected]=1;
for(k=0;k<ASSIGNROWS;k++)
if((k!=i) &&
(tableau[k][selected]==0))
assignedtableau[k][selected]=2;
}
}
/*
** Step through columns, doing same as above. Now, be careful
** of items in the other rows of a selected column.
*/
for(j=0;j<ASSIGNCOLS;j++)
{ numzeros=0;
for(i=0;i<ASSIGNROWS;i++)
if(tableau[i][j]==0L)
if(assignedtableau[i][j]==0)
{ numzeros++;
selected=i;
}
if(numzeros==1)
{ numassigns++;
totnumassigns++;
assignedtableau[selected][j]=1;
for(k=0;k<ASSIGNCOLS;k++)
if((k!=j) &&
(tableau[selected][k]==0))
assignedtableau[selected][k]=2;
}
}
/*
** Repeat until no more assignments to be made.
*/
} while(numassigns!=0);
/*
** See if we can leave at this point.
*/
if(totnumassigns==ASSIGNROWS) return(totnumassigns);
/*
** Now step through the array by row. If you find any unassigned
** zeros, pick the first in the row. Eliminate all zeros from
** that same row & column. This occurs if there are multiple optima...
** possibly.
*/
for(i=0;i<ASSIGNROWS;i++)
{ selected=-1;
for(j=0;j<ASSIGNCOLS;j++)
if((tableau[i][j]==0L) &&
(assignedtableau[i][j]==0))
{ selected=j;
break;
}
if(selected!=-1)
{ assignedtableau[i][selected]=1;
totnumassigns++;
for(k=0;k<ASSIGNCOLS;k++)
if((k!=selected) &&
(tableau[i][k]==0L))
assignedtableau[i][k]=2;
for(k=0;k<ASSIGNROWS;k++)
if((k!=i) &&
(tableau[k][selected]==0L))
assignedtableau[k][selected]=2;
}
}
return(totnumassigns);
}
/***********************
** second_assignments **
************************
** This section of the algorithm creates the revised
** tableau, and is difficult to explain. I suggest you
** refer to the algorithm's source, mentioned in comments
** toward the beginning of the program.
*/
static void second_assignments(long tableau[][ASSIGNCOLS],
short assignedtableau[][ASSIGNCOLS])
{
int i,j; /* Indexes */
short linesrow[ASSIGNROWS];
short linescol[ASSIGNCOLS];
long smallest; /* Holds smallest value */
unsigned short numassigns; /* Number of assignments */
unsigned short newrows; /* New rows to be considered */
/*
** Clear the linesrow and linescol arrays.
*/
for(i=0;i<ASSIGNROWS;i++)
linesrow[i]=0;
for(i=0;i<ASSIGNCOLS;i++)
linescol[i]=0;
/*
** Scan rows, flag each row that has no assignment in it.
*/
for(i=0;i<ASSIGNROWS;i++)
{ numassigns=0;
for(j=0;j<ASSIGNCOLS;j++)
if(assignedtableau[i][j]==1)
{ numassigns++;
break;
}
if(numassigns==0) linesrow[i]=1;
}
do {
newrows=0;
/*
** For each row checked above, scan for any zeros. If found,
** check the associated column.
*/
for(i=0;i<ASSIGNROWS;i++)
{ if(linesrow[i]==1)
for(j=0;j<ASSIGNCOLS;j++)
if(tableau[i][j]==0)
linescol[j]=1;
}
/*
** Now scan checked columns. If any contain assigned zeros, check
** the associated row.
*/
for(j=0;j<ASSIGNCOLS;j++)
if(linescol[j]==1)
for(i=0;i<ASSIGNROWS;i++)
if((assignedtableau[i][j]==1) &&
(linesrow[i]!=1))
{
linesrow[i]=1;
newrows++;
}
} while(newrows!=0);
/*
** linesrow[n]==0 indicate rows covered by imaginary line
** linescol[n]==1 indicate cols covered by imaginary line
** For all cells not covered by imaginary lines, determine smallest
** value.
*/
smallest=LONG_MAX;
for(i=0;i<ASSIGNROWS;i++)
if(linesrow[i]!=0)
for(j=0;j<ASSIGNCOLS;j++)
if(linescol[j]!=1)
if(tableau[i][j]<smallest)
smallest=tableau[i][j];
/*
** Subtract smallest from all cells in the above set.
*/
for(i=0;i<ASSIGNROWS;i++)
if(linesrow[i]!=0)
for(j=0;j<ASSIGNCOLS;j++)
if(linescol[j]!=1)
tableau[i][j]-=smallest;
/*
** Add smallest to all cells covered by two lines.
*/
for(i=0;i<ASSIGNROWS;i++)
if(linesrow[i]==0)
for(j=0;j<ASSIGNCOLS;j++)
if(linescol[j]==1)
tableau[i][j]+=smallest;
return;
}
|