summaryrefslogtreecommitdiff
path: root/fourier.c
blob: b6f40c8617d02a01776972bf228301f09550e2b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>*/
#include <math.h>
#include "nmglobal.h"
#include "nbench1.h"

/*************************
** FOURIER COEFFICIENTS **
*************************/

/**************
** DoFourier **
***************
** Perform the transcendental/trigonometric portion of the
** benchmark.  This benchmark calculates the first n
** fourier coefficients of the function (x+1)^x defined
** on the interval 0,2.
*/
void DoFourier(void)
{
FourierStruct *locfourierstruct;        /* Local fourier struct */
double *abase;               /* Base of A[] coefficients array */
double *bbase;               /* Base of B[] coefficients array */
unsigned long accumtime;        /* Accumulated time in ticks */
double iterations;              /* # of iterations */
char *errorcontext;             /* Error context string pointer */
int systemerror;                /* For error code */

/*
** Link to global structure
*/
locfourierstruct=&global_fourierstruct;

/*
** Set error context string
*/
errorcontext="FPU:Transcendental";

/*
** See if we need to do self-adjustment code.
*/
if(locfourierstruct->adjust==0)
{
	locfourierstruct->arraysize=100L;       /* Start at 100 elements */
	while(1)
	{

		abase=(double *)AllocateMemory(locfourierstruct->arraysize*sizeof(double),
				&systemerror);
		if(systemerror)
		{       ReportError(errorcontext,systemerror);
			ErrorExit();
		}

		bbase=(double *)AllocateMemory(locfourierstruct->arraysize*sizeof(double),
				&systemerror);
		if(systemerror)
		{       ReportError(errorcontext,systemerror);
			FreeMemory((void *)abase,&systemerror);
			ErrorExit();
		}
		/*
		** Do an iteration of the tests.  If the elapsed time is
		** less than or equal to the permitted minimum, re-allocate
		** larger arrays and try again.
		*/
		if(DoFPUTransIteration(abase,bbase,
			locfourierstruct->arraysize)>global_min_ticks)
			break;          /* We're ok...exit */

		/*
		** Make bigger arrays and try again.
		*/
		FreeMemory((void *)abase,&systemerror);
		FreeMemory((void *)bbase,&systemerror);
		locfourierstruct->arraysize+=50L;
	}
}
else
{       /*
	** Don't need self-adjustment.  Just allocate the
	** arrays, and go.
	*/
	abase=(double *)AllocateMemory(locfourierstruct->arraysize*sizeof(double),
			&systemerror);
	if(systemerror)
	{       ReportError(errorcontext,systemerror);
		ErrorExit();
	}

	bbase=(double *)AllocateMemory(locfourierstruct->arraysize*sizeof(double),
			&systemerror);
	if(systemerror)
	{       ReportError(errorcontext,systemerror);
		FreeMemory((void *)abase,&systemerror);
		ErrorExit();
	}
}
/*
** All's well if we get here.  Repeatedly perform integration
** tests until the accumulated time is greater than the
** # of seconds requested.
*/
accumtime=0L;
iterations=(double)0.0;
do {
	accumtime+=DoFPUTransIteration(abase,bbase,locfourierstruct->arraysize);
	iterations+=(double)locfourierstruct->arraysize*(double)2.0-(double)1.0;
} while(TicksToSecs(accumtime)<locfourierstruct->request_secs);


/*
** Clean up, calculate results, and go home.
** Also set adjustment flag to indicate no adjust code needed.
*/
FreeMemory((void *)abase,&systemerror);
FreeMemory((void *)bbase,&systemerror);

locfourierstruct->fflops=iterations/(double)TicksToFracSecs(accumtime);

if(locfourierstruct->adjust==0)
	locfourierstruct->adjust=1;

return;
}

/************************
** DoFPUTransIteration **
*************************
** Perform an iteration of the FPU Transcendental/trigonometric
** benchmark.  Here, an iteration consists of calculating the
** first n fourier coefficients of the function (x+1)^x on
** the interval 0,2.  n is given by arraysize.
** NOTE: The # of integration steps is fixed at
** 200.
*/
static unsigned long DoFPUTransIteration(double *abase,      /* A coeffs. */
			double *bbase,               /* B coeffs. */
			unsigned long arraysize)                /* # of coeffs */
{
double omega;           /* Fundamental frequency */
unsigned long i;        /* Index */
unsigned long elapsed;  /* Elapsed time */

/*
** Start the stopwatch
*/
elapsed=StartStopwatch();

/*
** Calculate the fourier series.  Begin by
** calculating A[0].
*/

*abase=TrapezoidIntegrate((double)0.0,
			(double)2.0,
			200,
			(double)0.0,    /* No omega * n needed */
			0 )/(double)2.0;

/*
** Calculate the fundamental frequency.
** ( 2 * pi ) / period...and since the period
** is 2, omega is simply pi.
*/
omega=(double)3.1415926535897932;

for(i=1;i<arraysize;i++)
{

	/*
	** Calculate A[i] terms.  Note, once again, that we
	** can ignore the 2/period term outside the integral
	** since the period is 2 and the term cancels itself
	** out.
	*/
	*(abase+i)=TrapezoidIntegrate((double)0.0,
			(double)2.0,
			200,
			omega * (double)i,
			1);

	/*
	** Calculate the B[i] terms.
	*/
	*(bbase+i)=TrapezoidIntegrate((double)0.0,
			(double)2.0,
			200,
			omega * (double)i,
			2);

}
#ifdef DEBUG
{
  int i;
  printf("\nA[i]=\n");
  for (i=0;i<arraysize;i++) printf("%7.3g ",abase[i]);
  printf("\nB[i]=\n(undefined) ");
  for (i=1;i<arraysize;i++) printf("%7.3g ",bbase[i]);
}
#endif
/*
** All done, stop the stopwatch
*/
return(StopStopwatch(elapsed));
}

/***********************
** TrapezoidIntegrate **
************************
** Perform a simple trapezoid integration on the
** function (x+1)**x.
** x0,x1 set the lower and upper bounds of the
** integration.
** nsteps indicates # of trapezoidal sections
** omegan is the fundamental frequency times
**  the series member #
** select = 0 for the A[0] term, 1 for cosine terms, and
**   2 for sine terms.
** Returns the value.
*/
static double TrapezoidIntegrate( double x0,            /* Lower bound */
			double x1,              /* Upper bound */
			int nsteps,             /* # of steps */
			double omegan,          /* omega * n */
			int select)
{
double x;               /* Independent variable */
double dx;              /* Stepsize */
double rvalue;          /* Return value */


/*
** Initialize independent variable
*/
x=x0;

/*
** Calculate stepsize
*/
dx=(x1 - x0) / (double)nsteps;

/*
** Initialize the return value.
*/
rvalue=thefunction(x0,omegan,select)/(double)2.0;

/*
** Compute the other terms of the integral.
*/
if(nsteps!=1)
{       --nsteps;               /* Already done 1 step */
	while(--nsteps )
	{
		x+=dx;
		rvalue+=thefunction(x,omegan,select);
	}
}
/*
** Finish computation
*/
rvalue=(rvalue+thefunction(x1,omegan,select)/(double)2.0)*dx;

return(rvalue);
}

/****************
** thefunction **
*****************
** This routine selects the function to be used
** in the Trapezoid integration.
** x is the independent variable
** omegan is omega * n
** select chooses which of the sine/cosine functions
**  are used.  note the special case for select=0.
*/
static double thefunction(double x,             /* Independent variable */
		double omegan,          /* Omega * term */
		int select)             /* Choose term */
{

/*
** Use select to pick which function we call.
*/
switch(select)
{
	case 0: return(pow(x+(double)1.0,x));

	case 1: return(pow(x+(double)1.0,x) * cos(omegan * x));

	case 2: return(pow(x+(double)1.0,x) * sin(omegan * x));
}

/*
** We should never reach this point, but the following
** keeps compilers from issuing a warning message.
*/
return(0.0);
}