/* ** emfloat.c ** Source for emulated floating-point routines. ** BYTEmark (tm) ** BYTE's Native Mode Benchmarks ** Rick Grehan, BYTE Magazine. ** ** Created: ** Last update: 3/95 ** ** DISCLAIMER ** The source, executable, and documentation files that comprise ** the BYTEmark benchmarks are made available on an "as is" basis. ** This means that we at BYTE Magazine have made every reasonable ** effort to verify that the there are no errors in the source and ** executable code. We cannot, however, guarantee that the programs ** are error-free. Consequently, McGraw-HIll and BYTE Magazine make ** no claims in regard to the fitness of the source code, executable ** code, and documentation of the BYTEmark. ** Furthermore, BYTE Magazine, McGraw-Hill, and all employees ** of McGraw-Hill cannot be held responsible for any damages resulting ** from the use of this code or the results obtained from using ** this code. */ #include #include #include "cleanbench.h" #include "randnum.h" #include "emfloat.h" static void SetInternalFPFZero(InternalFPF *dest, unsigned char sign); static void SetInternalFPFInfinity(InternalFPF *dest, unsigned char sign); static void SetInternalFPFNaN(InternalFPF *dest); static int IsMantissaZero(uint16_t *mant); static void Add16Bits(uint16_t *carry,uint16_t *a,uint16_t b,uint16_t c); static void Sub16Bits(uint16_t *borrow,uint16_t *a,uint16_t b,uint16_t c); static void ShiftMantLeft1(uint16_t *carry,uint16_t *mantissa); static void ShiftMantRight1(uint16_t *carry,uint16_t *mantissa); static void StickyShiftRightMant(InternalFPF *ptr,int amount); static void RoundInternalFPF(InternalFPF *ptr); static void normalize(InternalFPF *ptr); static void denormalize(InternalFPF *ptr,int minimum_exponent); static void choose_nan(InternalFPF *x,InternalFPF *y,InternalFPF *z, int intel_flag); /* ** Floating-point emulator. ** These routines are only "sort of" IEEE-compliant. All work is ** done using an internal representation. Also, the routines do ** not check for many of the exceptions that might occur. ** Still, the external formats produced are IEEE-compatible, ** with the restriction that they presume a low-endian machine ** (though the endianism will not effect the performance). ** ** Some code here was based on work done by Steve Snelgrove of ** Orem, UT. Other code comes from routines presented in ** the long-ago book: "Microprocessor Programming for ** Computer Hobbyists" by Neill Graham. */ /*********************** ** SetInternalFPFZero ** ************************ ** Set an internal floating-point-format number to zero. ** sign determines the sign of the zero. */ static void SetInternalFPFZero(InternalFPF *dest, unsigned char sign) { int i; /* Index */ dest->type=IFPF_IS_ZERO; dest->sign=sign; dest->exp=MIN_EXP; for(i=0;imantissa[i]=0; return; } /*************************** ** SetInternalFPFInfinity ** **************************** ** Set an internal floating-point-format number to infinity. ** This can happen if the exponent exceeds MAX_EXP. ** As above, sign picks the sign of infinity. */ static void SetInternalFPFInfinity(InternalFPF *dest, unsigned char sign) { int i; /* Index */ dest->type=IFPF_IS_INFINITY; dest->sign=sign; dest->exp=MIN_EXP; for(i=0;imantissa[i]=0; return; } /********************** ** SetInternalFPFNaN ** *********************** ** Set an internal floating-point-format number to Nan ** (not a number). Note that we "emulate" an 80x87 as far ** as the mantissa bits go. */ static void SetInternalFPFNaN(InternalFPF *dest) { int i; /* Index */ dest->type=IFPF_IS_NAN; dest->exp=MAX_EXP; dest->sign=1; dest->mantissa[0]=0x4000; for(i=1;imantissa[i]=0; return; } /******************* ** IsMantissaZero ** ******************** ** Pass this routine a pointer to an internal floating point format ** number's mantissa. It checks for an all-zero mantissa. ** Returns 0 if it is NOT all zeros, !=0 otherwise. */ static int IsMantissaZero(uint16_t *mant) { int i; /* Index */ int n; /* Return value */ n=0; for(i=0;i=0;i--) { accum=mantissa[i]; new_carry=accum & 0x8000; /* Get new carry */ accum=accum<<1; /* Do the shift */ if(*carry) accum|=1; /* Insert previous carry */ *carry=new_carry; mantissa[i]=accum; /* Return shifted value */ } return; } /******************** ** ShiftMantRight1 ** ********************* ** Shift a mantissa right by 1 bit. Provides carry, as ** above */ static void ShiftMantRight1(uint16_t *carry, uint16_t *mantissa) { int i; /* Index */ int new_carry; uint16_t accum; for(i=0;i>1; if(*carry) accum|=0x8000; *carry=new_carry; mantissa[i]=accum; } return; } /***************************** ** StickyShiftMantRight ** ****************************** ** This is a shift right of the mantissa with a "sticky bit". ** I.E., if a carry of 1 is shifted out of the least significant ** bit, the least significant bit is set to 1. */ static void StickyShiftRightMant(InternalFPF *ptr, int amount) { int i; /* Index */ uint16_t carry; /* Self-explanatory */ uint16_t *mantissa; mantissa=ptr->mantissa; if(ptr->type!=IFPF_IS_ZERO) /* Don't bother shifting a zero */ { /* ** If the amount of shifting will shift everyting ** out of existence, then just clear the whole mantissa ** and set the lowmost bit to 1. */ if(amount>=INTERNAL_FPF_PRECISION * 16) { for(i=0;imantissa[0] & 0x8000) == 0) { carry = 0; ShiftMantLeft1(&carry, ptr->mantissa); ptr->exp--; } return; } /**************** ** denormalize ** ***************** ** Denormalize an internal-representation number. This means ** shifting it right until its exponent is equivalent to ** minimum_exponent. (You have to do this often in order ** to perform additions and subtractions). */ static void denormalize(InternalFPF *ptr, int minimum_exponent) { long exponent_difference; if (IsMantissaZero(ptr->mantissa)) { printf("Error: zero significand in denormalize\n"); } exponent_difference = ptr->exp-minimum_exponent; if (exponent_difference < 0) { /* ** The number is subnormal */ exponent_difference = -exponent_difference; if (exponent_difference >= (INTERNAL_FPF_PRECISION * 16)) { /* Underflow */ SetInternalFPFZero(ptr, ptr->sign); } else { ptr->exp+=exponent_difference; StickyShiftRightMant(ptr, exponent_difference); } } } /********************* ** RoundInternalFPF ** ********************** ** Round an internal-representation number. ** The kind of rounding we do here is simplest...referred to as ** "chop". "Extraneous" rightmost bits are simply hacked off. */ static void RoundInternalFPF(InternalFPF *ptr) { /* int i; */ if (ptr->type == IFPF_IS_NORMAL || ptr->type == IFPF_IS_SUBNORMAL) { denormalize(ptr, MIN_EXP); if (ptr->type != IFPF_IS_ZERO) { /* clear the extraneous bits */ ptr->mantissa[3] &= 0xfff8; /* for (i=4; imantissa[i] = 0; } */ /* ** Check for overflow */ /* Does not do anything as ptr->exp is a short and MAX_EXP=37268 if (ptr->exp > MAX_EXP) { SetInternalFPFInfinity(ptr, ptr->sign); } */ } } return; } /******************************************************* ** ARITHMETIC OPERATIONS ON INTERNAL REPRESENTATION ** *******************************************************/ /*************** ** choose_nan ** **************** ** Called by routines that are forced to perform math on ** a pair of NaN's. This routine "selects" which NaN is ** to be returned. */ static void choose_nan(InternalFPF *x, InternalFPF *y, InternalFPF *z, int intel_flag) { int i; /* ** Compare the two mantissas, ** return the larger. Note that we will be emulating ** an 80387 in this operation. */ for (i=0; imantissa[i] > y->mantissa[i]) { memmove((void *)x,(void *)z,sizeof(InternalFPF)); return; } if (x->mantissa[i] < y->mantissa[i]) { memmove((void *)y,(void *)z,sizeof(InternalFPF)); return; } } /* ** They are equal */ if (!intel_flag) /* if the operation is addition */ memmove((void *)x,(void *)z,sizeof(InternalFPF)); else /* if the operation is multiplication */ memmove((void *)y,(void *)z,sizeof(InternalFPF)); return; } /********************** ** AddSubInternalFPF ** *********************** ** Adding or subtracting internal-representation numbers. ** Internal-representation numbers pointed to by x and y are ** added/subtracted and the result returned in z. */ void AddSubInternalFPF(unsigned char operation, InternalFPF *x, InternalFPF *y, InternalFPF *z) { int exponent_difference; uint16_t borrow; uint16_t carry; int i; InternalFPF locx,locy; /* Needed since we alter them */ /* ** Following big switch statement handles the ** various combinations of operand types. */ switch ((x->type * IFPF_TYPE_COUNT) + y->type) { case ZERO_ZERO: memmove((void *)x,(void *)z,sizeof(InternalFPF)); if (x->sign ^ y->sign ^ operation) { z->sign = 0; /* positive */ } break; case NAN_ZERO: case NAN_SUBNORMAL: case NAN_NORMAL: case NAN_INFINITY: case SUBNORMAL_ZERO: case NORMAL_ZERO: case INFINITY_ZERO: case INFINITY_SUBNORMAL: case INFINITY_NORMAL: memmove((void *)x,(void *)z,sizeof(InternalFPF)); break; case ZERO_NAN: case SUBNORMAL_NAN: case NORMAL_NAN: case INFINITY_NAN: memmove((void *)y,(void *)z,sizeof(InternalFPF)); break; case ZERO_SUBNORMAL: case ZERO_NORMAL: case ZERO_INFINITY: case SUBNORMAL_INFINITY: case NORMAL_INFINITY: memmove((void *)y,(void *)z,sizeof(InternalFPF)); z->sign ^= operation; break; case SUBNORMAL_SUBNORMAL: case SUBNORMAL_NORMAL: case NORMAL_SUBNORMAL: case NORMAL_NORMAL: /* ** Copy x and y to locals, since we may have ** to alter them. */ memmove((void *)&locx,(void *)x,sizeof(InternalFPF)); memmove((void *)&locy,(void *)y,sizeof(InternalFPF)); /* compute sum/difference */ exponent_difference = locx.exp-locy.exp; if (exponent_difference == 0) { /* ** locx.exp == locy.exp ** so, no shifting required */ if (locx.type == IFPF_IS_SUBNORMAL || locy.type == IFPF_IS_SUBNORMAL) z->type = IFPF_IS_SUBNORMAL; else z->type = IFPF_IS_NORMAL; /* ** Assume that locx.mantissa > locy.mantissa */ z->sign = locx.sign; z->exp= locx.exp; } else if (exponent_difference > 0) { /* ** locx.exp > locy.exp */ StickyShiftRightMant(&locy, exponent_difference); z->type = locx.type; z->sign = locx.sign; z->exp = locx.exp; } else /* if (exponent_difference < 0) */ { /* ** locx.exp < locy.exp */ StickyShiftRightMant(&locx, -exponent_difference); z->type = locy.type; z->sign = locy.sign ^ operation; z->exp = locy.exp; } if (locx.sign ^ locy.sign ^ operation) { /* ** Signs are different, subtract mantissas */ borrow = 0; for (i=(INTERNAL_FPF_PRECISION-1); i>=0; i--) Sub16Bits(&borrow, &z->mantissa[i], locx.mantissa[i], locy.mantissa[i]); if (borrow) { /* The y->mantissa was larger than the ** x->mantissa leaving a negative ** result. Change the result back to ** an unsigned number and flip the ** sign flag. */ z->sign = locy.sign ^ operation; borrow = 0; for (i=(INTERNAL_FPF_PRECISION-1); i>=0; i--) { Sub16Bits(&borrow, &z->mantissa[i], 0, z->mantissa[i]); } } else { /* The assumption made above ** (i.e. x->mantissa >= y->mantissa) ** was correct. Therefore, do nothing. ** z->sign = x->sign; */ } if (IsMantissaZero(z->mantissa)) { z->type = IFPF_IS_ZERO; z->sign = 0; /* positive */ } else if (locx.type == IFPF_IS_NORMAL || locy.type == IFPF_IS_NORMAL) { normalize(z); } } else { /* signs are the same, add mantissas */ carry = 0; for (i=(INTERNAL_FPF_PRECISION-1); i>=0; i--) { Add16Bits(&carry, &z->mantissa[i], locx.mantissa[i], locy.mantissa[i]); } if (carry) { z->exp++; carry=0; ShiftMantRight1(&carry,z->mantissa); z->mantissa[0] |= 0x8000; z->type = IFPF_IS_NORMAL; } else if (z->mantissa[0] & 0x8000) z->type = IFPF_IS_NORMAL; } break; case INFINITY_INFINITY: SetInternalFPFNaN(z); break; case NAN_NAN: choose_nan(x, y, z, 1); break; } /* ** All the math is done; time to round. */ RoundInternalFPF(z); return; } /************************ ** MultiplyInternalFPF ** ************************* ** Two internal-representation numbers x and y are multiplied; the ** result is returned in z. */ void MultiplyInternalFPF(InternalFPF *x, InternalFPF *y, InternalFPF *z) { int i; int j; uint16_t carry; uint16_t extra_bits[INTERNAL_FPF_PRECISION]; InternalFPF locy; /* Needed since this will be altered */ /* ** As in the preceding function, this large switch ** statement selects among the many combinations ** of operands. */ switch ((x->type * IFPF_TYPE_COUNT) + y->type) { case INFINITY_SUBNORMAL: case INFINITY_NORMAL: case INFINITY_INFINITY: case ZERO_ZERO: case ZERO_SUBNORMAL: case ZERO_NORMAL: memmove((void *)x,(void *)z,sizeof(InternalFPF)); z->sign ^= y->sign; break; case SUBNORMAL_INFINITY: case NORMAL_INFINITY: case SUBNORMAL_ZERO: case NORMAL_ZERO: memmove((void *)y,(void *)z,sizeof(InternalFPF)); z->sign ^= x->sign; break; case ZERO_INFINITY: case INFINITY_ZERO: SetInternalFPFNaN(z); break; case NAN_ZERO: case NAN_SUBNORMAL: case NAN_NORMAL: case NAN_INFINITY: memmove((void *)x,(void *)z,sizeof(InternalFPF)); break; case ZERO_NAN: case SUBNORMAL_NAN: case NORMAL_NAN: case INFINITY_NAN: memmove((void *)y,(void *)z,sizeof(InternalFPF)); break; case SUBNORMAL_SUBNORMAL: case SUBNORMAL_NORMAL: case NORMAL_SUBNORMAL: case NORMAL_NORMAL: /* ** Make a local copy of the y number, since we will be ** altering it in the process of multiplying. */ memmove((void *)&locy,(void *)y,sizeof(InternalFPF)); /* ** Check for unnormal zero arguments */ if (IsMantissaZero(x->mantissa) || IsMantissaZero(y->mantissa)) SetInternalFPFInfinity(z, 0); /* ** Initialize the result */ if (x->type == IFPF_IS_SUBNORMAL || y->type == IFPF_IS_SUBNORMAL) z->type = IFPF_IS_SUBNORMAL; else z->type = IFPF_IS_NORMAL; z->sign = x->sign ^ y->sign; z->exp = x->exp + y->exp ; for (i=0; imantissa[i] = 0; extra_bits[i] = 0; } for (i=0; i<(INTERNAL_FPF_PRECISION*16); i++) { /* ** Get rightmost bit of the multiplier */ carry = 0; ShiftMantRight1(&carry, locy.mantissa); if (carry) { /* ** Add the multiplicand to the product */ carry = 0; for (j=(INTERNAL_FPF_PRECISION-1); j>=0; j--) Add16Bits(&carry, &z->mantissa[j], z->mantissa[j], x->mantissa[j]); } else { carry = 0; } /* ** Shift the product right. Overflow bits get ** shifted into extra_bits. We'll use it later ** to help with the "sticky" bit. */ ShiftMantRight1(&carry, z->mantissa); ShiftMantRight1(&carry, extra_bits); } /* ** Normalize ** Note that we use a "special" normalization routine ** because we need to use the extra bits. (These are ** bits that may have been shifted off the bottom that ** we want to reclaim...if we can. */ while ((z->mantissa[0] & 0x8000) == 0) { carry = 0; ShiftMantLeft1(&carry, extra_bits); ShiftMantLeft1(&carry, z->mantissa); z->exp--; } /* ** Set the sticky bit if any bits set in extra bits. */ if (IsMantissaZero(extra_bits)) { z->mantissa[INTERNAL_FPF_PRECISION-1] |= 1; } break; case NAN_NAN: choose_nan(x, y, z, 0); break; } /* ** All math done...do rounding. */ RoundInternalFPF(z); return; } /********************** ** DivideInternalFPF ** *********************** ** Divide internal FPF number x by y. Return result in z. */ void DivideInternalFPF(InternalFPF *x, InternalFPF *y, InternalFPF *z) { int i; int j; uint16_t carry; uint16_t extra_bits[INTERNAL_FPF_PRECISION]; InternalFPF locx; /* Local for x number */ /* ** As with preceding function, the following switch ** statement selects among the various possible ** operands. */ switch ((x->type * IFPF_TYPE_COUNT) + y->type) { case ZERO_ZERO: case INFINITY_INFINITY: SetInternalFPFNaN(z); break; case ZERO_SUBNORMAL: case ZERO_NORMAL: if (IsMantissaZero(y->mantissa)) { SetInternalFPFNaN(z); break; } case ZERO_INFINITY: case SUBNORMAL_INFINITY: case NORMAL_INFINITY: SetInternalFPFZero(z, x->sign ^ y->sign); break; case SUBNORMAL_ZERO: case NORMAL_ZERO: if (IsMantissaZero(x->mantissa)) { SetInternalFPFNaN(z); break; } case INFINITY_ZERO: case INFINITY_SUBNORMAL: case INFINITY_NORMAL: SetInternalFPFInfinity(z, 0); z->sign = x->sign ^ y->sign; break; case NAN_ZERO: case NAN_SUBNORMAL: case NAN_NORMAL: case NAN_INFINITY: memmove((void *)x,(void *)z,sizeof(InternalFPF)); break; case ZERO_NAN: case SUBNORMAL_NAN: case NORMAL_NAN: case INFINITY_NAN: memmove((void *)y,(void *)z,sizeof(InternalFPF)); break; case SUBNORMAL_SUBNORMAL: case NORMAL_SUBNORMAL: case SUBNORMAL_NORMAL: case NORMAL_NORMAL: /* ** Make local copy of x number, since we'll be ** altering it in the process of dividing. */ memmove((void *)&locx,(void *)x,sizeof(InternalFPF)); /* ** Check for unnormal zero arguments */ if (IsMantissaZero(locx.mantissa)) { if (IsMantissaZero(y->mantissa)) SetInternalFPFNaN(z); else SetInternalFPFZero(z, 0); break; } if (IsMantissaZero(y->mantissa)) { SetInternalFPFInfinity(z, 0); break; } /* ** Initialize the result */ z->type = x->type; z->sign = x->sign ^ y->sign; z->exp = x->exp - y->exp + ((INTERNAL_FPF_PRECISION * 16 * 2)); for (i=0; imantissa[i] = 0; extra_bits[i] = 0; } while ((z->mantissa[0] & 0x8000) == 0) { carry = 0; ShiftMantLeft1(&carry, locx.mantissa); ShiftMantLeft1(&carry, extra_bits); /* ** Time to subtract yet? */ if (carry == 0) for (j=0; jmantissa[j] > extra_bits[j]) { carry = 0; goto no_subtract; } if (y->mantissa[j] < extra_bits[j]) break; } /* ** Divisor (y) <= dividend (x), subtract */ carry = 0; for (j=(INTERNAL_FPF_PRECISION-1); j>=0; j--) Sub16Bits(&carry, &extra_bits[j], extra_bits[j], y->mantissa[j]); carry = 1; /* 1 shifted into quotient */ no_subtract: ShiftMantLeft1(&carry, z->mantissa); z->exp--; } break; case NAN_NAN: choose_nan(x, y, z, 0); break; } /* ** Math complete...do rounding */ RoundInternalFPF(z); } /********************** ** Int32ToInternalFPF ** *********************** ** Convert a signed (long) 32-bit integer into an internal FPF number. */ void Int32ToInternalFPF(int32_t mylong, InternalFPF *dest) { int i; /* Index */ uint16_t myword; /* Used to hold converted stuff */ /* ** Save the sign and get the absolute value. This will help us ** with 64-bit machines, since we use only the lower 32 ** bits just in case. (No longer necessary after we use int32.) */ /* if(mylong<0L) */ if(mylong<0) { dest->sign=1; mylong=0-mylong; } else dest->sign=0; /* ** Prepare the destination floating point number */ dest->type=IFPF_IS_NORMAL; for(i=0;imantissa[i]=0; /* ** See if we've got a zero. If so, make the resultant FP ** number a true zero and go home. */ if(mylong==0) { dest->type=IFPF_IS_ZERO; dest->exp=0; return; } /* ** Not a true zero. Set the exponent to 32 (internal FPFs have ** no bias) and load the low and high words into their proper ** locations in the mantissa. Then normalize. The action of ** normalizing slides the mantissa bits into place and sets ** up the exponent properly. */ dest->exp=32; myword=(uint16_t)((mylong >> 16) & 0xFFFFL); dest->mantissa[0]=myword; myword=(uint16_t)(mylong & 0xFFFFL); dest->mantissa[1]=myword; normalize(dest); return; } #ifdef DEBUG /************************ ** InternalFPFToString ** ************************* ** FOR DEBUG PURPOSES ** This routine converts an internal floating point representation ** number to a string. Used in debugging the package. ** Returns length of converted number. ** NOTE: dest must point to a buffer big enough to hold the ** result. Also, this routine does append a null (an effect ** of using the sprintf() function). It also returns ** a length count. ** NOTE: This routine returns 5 significant digits. Thats ** about all I feel safe with, given the method of ** conversion. It should be more than enough for programmers ** to determine whether the package is properly ported. */ static int InternalFPFToString(char *dest, InternalFPF *src) { InternalFPF locFPFNum; /* Local for src (will be altered) */ InternalFPF IFPF10; /* Floating-point 10 */ InternalFPF IFPFComp; /* For doing comparisons */ int msign; /* Holding for mantissa sign */ int expcount; /* Exponent counter */ int ccount; /* Character counter */ int i,j,k; /* Index */ uint16_t carryaccum; /* Carry accumulator */ uint16_t mycarry; /* Local for carry */ /* ** Check first for the simple things...Nan, Infinity, Zero. ** If found, copy the proper string in and go home. */ switch(src->type) { case IFPF_IS_NAN: memcpy(dest,"NaN",3); return(3); case IFPF_IS_INFINITY: if(src->sign==0) memcpy(dest,"+Inf",4); else memcpy(dest,"-Inf",4); return(4); case IFPF_IS_ZERO: if(src->sign==0) memcpy(dest,"+0",2); else memcpy(dest,"-0",2); return(2); } /* ** Move the internal number into our local holding area, since ** we'll be altering it to print it out. */ memcpy((void *)&locFPFNum,(void *)src,sizeof(InternalFPF)); /* ** Set up a floating-point 10...which we'll use a lot in a minute. */ /* LongToInternalFPF(10L,&IFPF10); */ Int32ToInternalFPF((int32_t)10,&IFPF10); /* ** Save the mantissa sign and make it positive. */ msign=src->sign; /* src->sign=0 */ /* bug, fixed Nov. 13, 1997 */ (&locFPFNum)->sign=0; expcount=0; /* Init exponent counter */ /* ** See if the number is less than 10. If so, multiply ** the number repeatedly by 10 until it's not. For each ** multiplication, decrement a counter so we can keep track ** of the exponent. */ while(1) { AddSubInternalFPF(1,&locFPFNum,&IFPF10,&IFPFComp); if(IFPFComp.sign==0) break; MultiplyInternalFPF(&locFPFNum,&IFPF10,&IFPFComp); expcount--; memcpy((void *)&locFPFNum,(void *)&IFPFComp,sizeof(InternalFPF)); } /* ** Do the reverse of the above. As long as the number is ** greater than or equal to 10, divide it by 10. Increment the ** exponent counter for each multiplication. */ while(1) { AddSubInternalFPF(1,&locFPFNum,&IFPF10,&IFPFComp); if(IFPFComp.sign!=0) break; DivideInternalFPF(&locFPFNum,&IFPF10,&IFPFComp); expcount++; memcpy((void *)&locFPFNum,(void *)&IFPFComp,sizeof(InternalFPF)); } /* ** About time to start storing things. First, store the ** mantissa sign. */ ccount=1; /* Init character counter */ if(msign==0) *dest++='+'; else *dest++='-'; /* ** At this point we know that the number is in the range ** 10 > n >=1. We need to "strip digits" out of the ** mantissa. We do this by treating the mantissa as ** an integer and multiplying by 10. (Not a floating-point ** 10, but an integer 10. Since this is debug code and we ** could care less about speed, we'll do it the stupid ** way and simply add the number to itself 10 times. ** Anything that makes it to the left of the implied binary point ** gets stripped off and emitted. We'll do this for ** 5 significant digits (which should be enough to ** verify things). */ /* ** Re-position radix point */ carryaccum=0; while(locFPFNum.exp>0) { mycarry=0; ShiftMantLeft1(&mycarry,locFPFNum.mantissa); carryaccum=(carryaccum<<1); if(mycarry) carryaccum++; locFPFNum.exp--; } while(locFPFNum.exp<0) { mycarry=0; ShiftMantRight1(&mycarry,locFPFNum.mantissa); locFPFNum.exp++; } for(i=0;i<6;i++) if(i==1) { /* Emit decimal point */ *dest++='.'; ccount++; } else { /* Emit a digit */ *dest++=('0'+carryaccum); ccount++; carryaccum=0; memcpy((void *)&IFPF10, (void *)&locFPFNum, sizeof(InternalFPF)); /* Do multiply via repeated adds */ for(j=0;j<9;j++) { mycarry=0; for(k=(INTERNAL_FPF_PRECISION-1);k>=0;k--) Add16Bits(&mycarry,&(IFPFComp.mantissa[k]), locFPFNum.mantissa[k], IFPF10.mantissa[k]); carryaccum+=mycarry ? 1 : 0; memcpy((void *)&locFPFNum, (void *)&IFPFComp, sizeof(InternalFPF)); } } /* ** Now move the 'E', the exponent sign, and the exponent ** into the string. */ *dest++='E'; /* sprint is supposed to return an integer, but it caused problems on SunOS * with the native cc. Hence we force it. * Uwe F. Mayer */ ccount+=(int)sprintf(dest,"%4d",expcount); /* ** All done, go home. */ return(ccount); } #endif